MATH 113, SECTION 4

Final Exam Review: Examples

SPRING 2018

Give a non-trivial example of each of the following objects. All are possible. If
you can come up with more than one example of some, that would be good practice.
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2.

3.
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14.
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18.
19.

20.

A finite ring of matrices.
A subring of C which does not have unity.
A matrix ring which does not have unity.

Three units in M3(Z).

. A ring homomorphism ¢ : Z — Z x Z.

A finite ring with at least 3 zero divisors.

A ring whose only units are 1 and —1.

from factoring).

. A finite field with at least 20 elements.

A zero divisor of the ring Zs X Zr.

A polynomial ring which is an integral domain.

A ring without unity that has no zero divisors.

A polynomial ring which is not an integral domain.
An integral domain whose field of quotients is R.
An ideal of Z3 x Z, which is not a prime ideal.

A principal ideal of Zs x Z, which is a prime ideal.
A maximal ideal of R[z].

A ring which has no proper nontrivial maximal ideals.

. A solution of the equation 2% + 52 + 6 in Z;5 other than —2 or —3 (which come

A ring R which is an integral domain but not a field, and an ideal I of R such

that R/I is not a field.

A ring R which is an integral domain but not a field, and an ideal I of R such

that R/I is a field.
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22.
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39.

A polynomial ring R which is an integral domain, and an ideal I of R such that
R/I has zero divisors.

A ring R which is not an integral domain, and an ideal I of R such that R/I is
an integral domain.

Two non-isomorphic rings which each contain 3 elements.
A non-trivial ring homomorphism ¢: Z[z| — Zs|x].
A nontrivial ring homomorphism ¢: Z[x] — Z X Z x Z.

A polynomial in Z[x] which has 4 terms and is irreducible over Q by Eisenstein’s
Criteria.

A polynomial in Z[z] which has 4 terms and is irreducible over Q, but Eisen-
stein’s Criteria do not apply.

An irreducible quadratic polynomial in Zs|x].

Two different proper subgroups A and B of D, such that A< B and B < Dy,
but A is not a normal subgroup of Djy.

Two subgroups A and B of G = ZyxZ, such that G/A ~ Z, and G/ B ~ 7y X Zs.
A non-trivial homomorphism ¢: Ziy X Dy — Zy4.
A subgroup of S3 x Z4 which has exactly 8 elements.

An infinite group G and a subgroup H such that there are infinitely many left
cosets of H in G.

An element of Z4 x Zs X Zg which has order 10 and does not have a 0 in any
component.

A non-abelian group with at least 6 elements of order 5.
A pair of zero divisors in the ring Zs x My(Z).
An extension of Q which is algebraic of degree 4.

Given an example of a commutative ring without zero-divisors that is not an
integral domain.

Find a ring R and two elements a,b € R such that a and b are zero-divisors and
a + b is a unit.



