MATH 234 WES WORKSHEET 21 FALL 2014

1. We saw on the last worksheet how to use a line integral to compute the work done by a given vector field. In this exercise, we compute a different quantity, known as **flux**. The integral we'll be computing is

$$\int_{C} \overrightarrow{F} \cdot \overrightarrow{N} ds = \int_{t=a}^{t=b} \overrightarrow{F} \cdot \overrightarrow{N} \| \overrightarrow{r}' \| dt$$

where \overrightarrow{F} is the vector field we're integrating, \overrightarrow{N} is a unit normal vector field for the curve C, and \overrightarrow{r} is a parametrization of C. The convention (in this class, not always!) is that \overrightarrow{N} should point outwards from C.

The physical interpretation of flux is as follows: if \overrightarrow{F} describes the velocity of some fluid in the xy plane, then the flux is how much fluid is crossing the curve C.

- (a) Suppose C is the unit circle centered at the origin, oriented counter-clockwise. Find a parametrization $\overrightarrow{r}(t)$ of C.
- (b) Find the unit normal vector field $\vec{N}(t)$ for the curve C. (Remember finding \vec{T} , \vec{N} , and \vec{B} ?) Does N point outwards from C? If it points inwards, your answer will be negated.
- (c) Suppose $\vec{F} = \langle x, y \rangle$. Compute the flux of F across C.
- (d) Suppose instead that $\overrightarrow{F} = \langle 1, 0 \rangle$. Without computing anything, and only using the physical interpretation, what is the flux of \overrightarrow{F} over C? What is the flux of \overrightarrow{F} over any closed curve (a loop)?
- (e) Again with $\overrightarrow{F} = \langle 1, 0 \rangle$, what is the flux if C is a horizontal line? How about a vertical line?
- 2. Let C be the ellipse $16x^2 + y^2 = 16$, oriented counter-clockwise, and let $\overrightarrow{F}(x,y) = \langle x,y \rangle$. Find the work done by \overrightarrow{F} on a particle moving around C. Find the flux of \overrightarrow{F} across C.
- 3. Let C be the closed path that consists of the upper semicircle $x^2 + y^2 = 9$ from the point (3,0) to the point (-3,0), followed by the straight line segment from (-3,0) to (3,0). Let $\overrightarrow{F}(x,y) = \langle x^2, y^2 \rangle$. Find the work and flux, as in the previous problem.
- 4. Find the flux of \vec{F} across the triangle with vertices (1,0), (0,1), and (-1,0).
- 5. Compute the following integrals
 - (a) $\int_C x^2 + y^2 ds$ where C is the line segment from (0,0) to (1,1).
 - (b) $\int_C \vec{F} \cdot d\vec{r}$ where $\vec{F} = \langle x, y \rangle$ and C is as above.
 - (c) $\int_C \vec{F} \cdot \vec{N} ds$ where $\vec{F} = \langle x, y \rangle$ and C is as above.

6. Using what you keethe origin?	now about flux, how mi	ght you determine i	f a closed curve tr	averses around