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0.2 Equivalence Relations and Partitions

The notion of an equivalence relation on a set plays an important role in many
constructions in algebra. As we see in this section, an equivalence relation on a set
determines a partition of the set into non-overlapping pieces and, conversely, any
such partition determines an equivalence relation on the set.

0.2.1 EXAMPLE On the set Z of all integers, consider the relation ~ defined by the
condiion a~b if and only if a - b is divisible by 5, for any a, b € Z. Note the
following properties of ~:

(1) For any integer a we have a - a = 0, which is divisible by 5, so a ~ a.

(2) For any integers g and b, a - b = (b - a), so if a ~ b, meaning that a - b is
divisible by 5, then sois b - @, and we have b ~ a.

(3) For any integers a, b, and ¢, if a~b and b ~c, then a-b = 5n and
b - ¢ =5m for some integers n and m. Butthena-c=(@-b)+ (b -¢) =5n+ 5m =
5(n + m), and so we have a ~ c.
Now let us take, say, the integer 7, and find the subset [7] = {(x EZ | x ~7} of Z
consisting of all integers x such that x ~ 7. Note that 7 ~ 2, and therefore if x ~ 7, then
x ~2 by property (3). Likewise, since 2 ~7, if x ~2, then x ~7. So x ~7 if and only
if x ~ 2, which is to say if and only if x - 2 = 5k, or, equivalently, x = 2 + 5k for some
integer k. Thus [7] = 2 + 5Z, the set of all integers that can be written as the sum of 2
plus a multiple of 5. &

0.2.2 EXAMPLE Let P(Z) be the set of all subsets of Z, and consider the relation ~
on P(Z) defined by letting S ~ 7 if and only if 1S = |71, that is, if and only if S and T
have the same cardinality. So S~ 7 if and only if there is a one-to-one, onto map
¢: S — T. (See Definition 0.1.25.) Note the following properties of ~:

(1) For any S € P(Z), the identity map on S is a one-to-one, onto map from S
to itself. Therefore, S ~ S.

(2) For any S, T € P(Z), if S~T, then there is a one-to-one, onto map
¢: S — T. Then ¢1: T — S is one to one and onto by Theorems 0.1.20 and 0.1.24, so
T~S.

(3) Forany S, T, U € P(Z), if S~T and T ~ U, then there are one-to-one,
onto maps ¢: S — 7" and x: 7'— U. Then ¢ o ¢: S — U is one to one and onto by
Theorem 0.1.24,s0 S ~ U.

In this example, if S is finite, then [S] = {7 € P(Z)! S ~ T} consists of all subsets of Z
that have the same number of elements as S. If S is infinite, [S] consists of all infinite
subsets of Z. &

0.2.3 DEFINITION A relation on a nonempty set S is a subset R of Sx S. Let R be
a relation on § and write aRb to mean that (q, b)) € R. Then R is an equivalence
relation on S if it satisfies the following three conditions for all a, b, ¢ € S:
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(1) Reflexivity aRa

(2) Symmetry I aRb, then bRa.

(3) Transitivity I aRkb and bRe, then aRe.
If R is an equivalence relation on S, then for any a € S, the equivalence class of ais
the set [a] = {b € S 1 aRb}. O
In Examples 0.2.1 and 0.2.2 the relations ~ were equivalence relations.
We prove some important properties of equivalence classes that are used frequently
in algebraic constructions.

0.2.4 THEOREM Let ~ be an equivalence relation on a set S, and let a, b € S be
any elements of S. Then

(1) a € lal.

(2) If a € [b], then [a] = [b].

(3) |a] = [b] if and only ifa~b.

(4) Either [a] = [b] or [a] D [b1=4.

Proof (1) Reflexivity tellsusa~a and therefore a € [a].

(2) If a € [b], then by definition of equivalence classes we have b ~a, and
symmetry tells us we have a ~ b. Now if x € [a], then a ~ x, and transitivity tells us
b ~x, so x € [b]. Thus [a] C [b]. Similarly, if y € [b] then b ~y, and transitivity tells
us a ~y,so0y € [a]. Thus [p] € [a] and [a] = [P].

(3) (=>) Suppose [a] = [b]. Since by (1) we have b € [b] it follows that
b € [a], which by definition means a ~ b. («<=) Suppose a~b. By definition, this
means b € [a], and by (2) it follows that [a] = [b].

(4) Suppose that [a] N [b] # &. This means there is some ¢ such that ¢ € [a]
and ¢ € [b]. By (2) it follows that [c] = [a] and [¢] = [b], so [a] = [p]. O

The fact that an equivalence relation divides a set into disjoint or non-overlapping
pieces, the equivalence classes, is what makes equivalence relations so useful in
algebraic constructions. In the next example, instead of starting with an equivalence
relation and using it to divide up a set, we starl by dividing a set and use the division
to define an equivalence relation.

0.2.5 EXAMPLE Starting with the set R of all real numbers, let [1] = {xER |
0<x-1< 1}. In other words, [1] is the half-closed, half-open interval [1,2) in R.
Similarly, for any integer n let [n] = {x € R10<x-n<1}=[n n+1). Note that for
any distinct integers i # j we have [i] N [j] = &, and for any real number x € R,
x € [n] where n is the greatest integer such that n < x. So we have divided R into
disjoint pieces. If now we define a relation ~ on R by letting x ~y if and only if
x € [n] and y € [n] for the same integer n, then it can be checked that ~ is an
equivalence relation on R. (See Exercise 9 at the end of this section.) ¢
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It is convenient to name such a division of a set into disjoint pieces.

0.2.6 DEFINITION Let S be a nonempty set. A partition of S consists of a
collection {P;} of nonempty subsets of S such that

(1) S = UPi

(2) For any P;, Pjin the collection, either P; = Pjor P; N Pj= .
The subsets P; in the collection are called the cells of the partition. O

We now come to the main theorem connecting equivalence relations and partitions,
generalizing what we observed in Example 0.2.5.

0.2.7 THEOREM Let S be a nonempty set.

(1) Given an equivalence relation ~ on S, the collection of equivalence
classes under ~ is a partition of S.

(2). Given a partition {P;} of S, there is an equivalence relation on S whose
equivalence classes are precisely the cells of the partition.

Proof (1) Given an equivalence relation ~, by Theorem 0.2.4, part (1), a € [a] for
each a € S, and therefore S = U[a], which is the condition (1) for being a partition

in Definition 0.2.6. Theorem 0.2.4, part (4), is precisely the condition (2) for being a
partition in Definition 0.2.6.

(2) Given a partition {FP;}, define a relation ~ by letting a ~ b if and only if
a € P;and b € P; for the same cell P;. By condition (1) of Definition 0.2.6, any a € S
does belong to some cell in the partition, and of course a then belongs to the same
cell as itself, so we have a ~a. If g ~b, then a and b belong to the same cell of the
partition, which is the same as saying » and a belong to the same cell, and we have
b~a. If a~bandb~c, then a belongs to the same cell P; in the partition as b and b
belongs to the same cell P;in the partition as ¢. Since b € P; N P}, by condition (2) of
Definition 0.2.6 we must have P; = P}, and a and ¢ belong to the same cell of the
partition, and ¢ ~ c¢. Finally, given a € S, let a € P;. Then x € [a] if and only if a ~ x,
hence if and only if a and x belong to the same cell of the partition or, in other words,
if and only if x € P;. So the equivalence class of ais [a¢] = P;. O

Exercises 0.2
In Exercises 1 through 8 determine whether the indicated relation is an equivalence
relation on the indicated set and, if so, describe the equivalence classes.
1.InR a ~ b if and only if lal = 1b] 2.InRa~bifandonlyif a<b

3 InZa~bifandonlyifa-biseven 4.InRa~bifandonlyifla-bl<1




