MATH 222(1,2,4) Fall 2015

Quiz 8 RM Solutions

Please inform your TA if you find any errors in the quiz solutions.

1. (4 points)

For each of the following, circle true or false:

$(x+x^3)^3 = o(x^3)$	True	False
$\cos(x^2) - 1 = o(x^3)$	True	False
$e^x - 1 = o(x)$	True	False
$\sin(x) - x = o(x^2)$	True	False

Solution:

- 1. False
- 2. True
- 3. False
- 4. True

2. (6 points)

Suppose that y(x) is a solution to

$$0 = y''(x) + y(x) + 3x$$
$$y(0) = 2 \qquad y'(0) = 3.$$

Compute the degree three Taylor polynomial of y(x) around zero.

Solution: Write

$$y(x) = y(0) + y'(0)x + \frac{y''(0)}{2}x^2 + \frac{y'''(0)}{3!}x^3 + o(x^3)$$

$$= a_0 + a_1x + a_2x^2 + a_3x^3 + o(x^3)$$

$$= a_0 + a_1x + o(x)$$

$$y''(x) = 2a_2 + 6a_3x + o(x).$$

Substituting in, we have

$$0 = y''(x) + y(x) + 3x$$

= $(2a_2 + 6a_3x + o(x)) + (a_0 + a_1x + o(x)) + 3x$
= $(2a_2 + a_0) + (6a_3 + a_1 + 3)x + o(x)$.

Equating coefficients, we see that

$$0 = 2a_2 + a_0 \tag{1}$$

$$0 = 6a_3 + a_1 + 3. (2)$$

We are given that $a_0=y(0)=2$ and $a_1=y'(0)=3$. Plugging $a_0=2$ into (1), we see that $a_2=-1$ and plugging $a_1=3$ into (2), we see that $a_3=-1$. We conclude that the degree three Taylor polynomial of y(x) is given by $f(0)+f'(0)x+\frac{f''(0)}{2}x^2+\frac{f'''(x)}{3!}x^3=a_0+a_1x+a_2x^2+a_3x^3=2+3x-x^2-x^3$.