1. Consider the parametric curve given by:

$$\mathbf{x}(t) = \begin{pmatrix} e^t \cos t \\ e^t \sin t \\ e^t \end{pmatrix}$$

- (a) Find the unit tangent, normal, and binormal vectors.
- (b) Find the curvature κ .
- (c) Find the arc length from t = 0 to $t = \pi$.
- (d) Parametrize the line that is tangent to $\mathbf{x}(t)$ at the point t_0 .
- (e) Find the point where the above tangent line intersects the xy-plane. Let $\mathbf{y}(t_0)$ be the position vector for this point. As t_0 varies, sketch the curve that $\mathbf{y}(t_0)$ traces.
- 2. Consider the cycloid $\mathbf{x}(t) = \begin{pmatrix} t \sin t \\ 1 \cos t \end{pmatrix}$. Find the arc length of one period, $0 \le t \le 2\pi$.

Hint: you can use the following trig identity.

$$\sin^2\theta = \frac{1 - \cos 2\theta}{2}$$

Also, be careful with absolute values.

- 3. Consider the curve $\mathbf{x}(t) = \begin{pmatrix} a\cos(t) \\ a\sin(t) \\ bt \end{pmatrix}$.
 - (a) Determine what kind of curve this is (circle, helix, cycloid, etc. be precise!).
 - (b) Find the unit tangent, normal, and binormal vectors for \mathbf{x} .
 - (c) Find the curvature vector scalar curvature $\kappa(t)$.