- 1. Find the outward flux of \mathbf{F} across the boundary of the region D.
 - (a) $\mathbf{F} = (y x)\mathbf{i} + (z y)\mathbf{j} + (y x)\mathbf{k}$, and D is the cube bounded by the planes $x = \pm 1$, $y = \pm 1$, and $z = \pm 1$.
 - (b) $\mathbf{F} = \begin{pmatrix} x^2 \\ y^2 \\ z^2 \end{pmatrix}$ and D is the region cut from the solid cylinder $x^2 + y^2 \le 4$ by the planes z = 0 and z = 1.
 - (c) $\mathbf{F} = y\mathbf{i} + xy\mathbf{j} z\mathbf{k}$ and D is the region inside the solid cylinder $x^2 + y^2 \le 4$ between the plane z = 0 and the paraboloid $z = x^2 + y^2$.
 - (d) $\mathbf{F} = x^3 \mathbf{i} + y^3 \mathbf{j} + z^3 \mathbf{k}$ and D is the solid sphere $x^2 + y^2 + z^2 \le a$.
- 2. The base of the closed cubelike surface shown here is the unit square in the xy-plane. The four sides lie in the planes x = 1, x = 1, y = 1, and y = 1. The top is an arbitrary smooth surface whose identity is unknown. Let $\mathbf{F} = x\mathbf{i} 2y\mathbf{j} + (z+3)\mathbf{k}$ and suppose the outward flux of \mathbf{F} through side A is 1 and through side B is -3. Can you conclude anything about the outward flux through the top?

- 3. Show that the flux of the position vector field $\mathbf{F} x\mathbf{i} + y\mathbf{j} + z\mathbf{k}$ outward through a smooth closed surface Σ is three times the volume of the region enclosed by the surface.
- 4. Among all rectangular solids defined by the inequalities $0 \le x \le a, 0 \le y \le b, 0 \le z \le 1$, find the one for which the total flux of $\mathbf{F} = (-x^2 4xy)\mathbf{i} 6yz\mathbf{j} + 12z\mathbf{k}$ outward through the six sides in the greatest. What is the greatest flux?